Edexcel Maths FP1

Topic Questions from Papers

Matrices

- 7. Given that $\mathbf{X} = \begin{pmatrix} 2 & a \\ -1 & -1 \end{pmatrix}$, where a is a constant, and $a \neq 2$,
 - (a) find X^{-1} in terms of a.

(3)

Given that $\mathbf{X} + \mathbf{X}^{-1} = \mathbf{I}$, where \mathbf{I} is the 2×2 identity matrix,

(b) find the value of a.

10.
$$\mathbf{A} = \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 3\sqrt{2} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

(a) Describe fully the transformations described by each of the matrices A, B and C. (4)

It is given that the matrix $\mathbf{D} = \mathbf{C}\mathbf{A}$, and that the matrix $\mathbf{E} = \mathbf{D}\mathbf{B}$.

(b) Find **D**.

(2)

(c) Show that
$$\mathbf{E} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix}$$
. (1)

The triangle ORS has vertices at the points with coordinates (0, 0), (-15, 15) and (4, 21). This triangle is transformed onto the triangle OR'S' by the transformation described by \mathbf{E} .

(d) Find the coordinates of the vertices of triangle OR'S'.

(4)

(e) Find the area of triangle OR'S' and deduce the area of triangle ORS.

Leave	
blank	

8. $\mathbf{R} = \begin{pmatrix} a & 2 \\ a & b \end{pmatrix}$, where a and b are constants and $a > 0$.	
(a) Find \mathbb{R}^2 in terms of a and b .	(3)
Given that \mathbb{R}^2 represents an enlargement with centre $(0, 0)$ and scale factor 15,	
(b) find the value of a and the value of b.	(5)

7. $\mathbf{A} = \begin{pmatrix} a & -2 \\ -1 & 4 \end{pmatrix}$, where a is a constant.

(a) Find the value of a for which the matrix \mathbf{A} is singular.

(2)

$$\mathbf{B} = \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}$$

(b) Find \mathbf{B}^{-1} .

(3)

The transformation represented by $\bf B$ maps the point P onto the point Q.

Given that Q has coordinates (k - 6, 3k + 12), where k is a constant,

(c) show that P lies on the line with equation y = x + 3.

$$\mathbf{A} = \begin{pmatrix} a & -5 \\ 2 & a+4 \end{pmatrix}$$
, where a is real.

(a) Find det A in terms of a.

(2)

(b) Show that the matrix A is non-singular for all values of a.

(3)

Given that a = 0,

(c) find A^{-1} .

_				_	
_	_	_	_	_	_
_	_	_	_	_	
_	_	_	_	_	_
_	_	_	_	_	

9.

$$\mathbf{M} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

(a) Describe fully the geometrical transformation represented by the matrix \mathbf{M} .

(2)

The transformation represented by **M** maps the point *A* with coordinates (p, q) onto the point *B* with coordinates $(3\sqrt{2}, 4\sqrt{2})$.

(b) Find the value of p and the value of q.

(4)

(c) Find, in its simplest surd form, the length *OA*, where *O* is the origin.

(2)

(d) Find \mathbf{M}^2 .

(2)

The point B is mapped onto the point C by the transformation represented by \mathbf{M}^2 .

(e) Find the coordinates of C.

2.	$\mathbf{M} = \begin{pmatrix} 2a \\ 6 \end{pmatrix}$	$\begin{pmatrix} 3 \\ a \end{pmatrix}$, where a is a real constant
----	--	---

(a) Given that a = 2, find \mathbf{M}^{-1} .

(3)

(b) Find the values of a for which M is singular.

- **6.** Write down the 2×2 matrix that represents
 - (a) an enlargement with centre (0,0) and scale factor 8,

(1)

(b) a reflection in the *x*-axis.

(1)

Hence, or otherwise,

(c) find the matrix T that represents an enlargement with centre (0,0) and scale factor 8, followed by a reflection in the x-axis.

(2)

$$\mathbf{A} = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix}$, where k and c are constants.

(d) Find AB.

(3)

Given that AB represents the same transformation as T,

(e) find the value of k and the value of c.

2.

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$$

(a) Find **AB**.

(3)

Given that

$$\mathbf{C} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

(b) describe fully the geometrical transformation represented by ${\bf C}$,

(2)

(c) write down \mathbf{C}^{100} .

(1)

Q2

(Total 6 marks)

8.

$$\mathbf{A} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$$

(a) Find det A.

(1)

(b) Find A^{-1} .

(2)

The triangle R is transformed to the triangle S by the matrix A. Given that the area of triangle S is 72 square units,

(c) find the area of triangle R.

(2)

The triangle S has vertices at the points (0,4), (8,16) and (12,4).

(d) Find the coordinates of the vertices of R.

3. (a) Given that

$$\mathbf{A} = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}$$

- (i) find A^2 ,
- (ii) describe fully the geometrical transformation represented by A^2 .

(4)

(b) Given that

$$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

describe fully the geometrical transformation represented by B.

(2)

(c) Given that

$$\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}$$

where k is a constant, find the value of k for which the matrix \mathbf{C} is singular.

Leave	
hlank	

5. A =	$\begin{bmatrix} -4 \\ b \end{bmatrix}$	a \ -2 .	, where a and b are constants.
--------	---	----------	------------------------------------

Given that the matrix **A** maps the point with coordinates (4, 6) onto the point with coordinates (2, -8),

(a) find the value of a and the value of b.

(4)

A quadrilateral R has area 30 square units. It is transformed into another quadrilateral S by the matrix A. Using your values of a and b,

(b) find the area of quadrilateral *S*.

- **4.** A right angled triangle *T* has vertices A(1, 1), B(2, 1) and C(2, 4). When *T* is transformed by the matrix $\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, the image is T'.
 - (a) Find the coordinates of the vertices of T'.

(2)

(b) Describe fully the transformation represented by **P**.

(2)

The matrices $\mathbf{Q} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ represent two transformations. When T is transformed by the matrix $\mathbf{Q}\mathbf{R}$, the image is T''.

(c) Find **QR**.

(2)

(d) Find the determinant of **QR**.

(2)

(e) Using your answer to part (d), find the area of T''.

0
X

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$

(a) Show that **A** is non-singular.

(2)

(b) Find **B** such that $\mathbf{B}\mathbf{A}^2 = \mathbf{A}$.

2. (a) Given that

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$$

find AB.

(2)

(b) Given that

$$\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix}, \text{ where } k \text{ is a constant}$$

and

$$\mathbf{E} = \mathbf{C} + \mathbf{D}$$

find the value of k for which \mathbf{E} has no inverse.

9.

$$\mathbf{M} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}$$

(a) Find det M.

(1)

The transformation represented by **M** maps the point S(2a-7, a-1), where a is a constant, onto the point S'(25, -14).

(b) Find the value of a.

(3)

The point R has coordinates (6, 0).

Given that O is the origin,

(c) find the area of triangle ORS.

(2)

Triangle *ORS* is mapped onto triangle *OR'S'* by the transformation represented by **M**.

(d) Find the area of triangle *OR'S'*.

(2)

Given that

$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(e) describe fully the single geometrical transformation represented by A.

(2)

The transformation represented by $\bf A$ followed by the transformation represented by $\bf B$ is equivalent to the transformation represented by $\bf M$.

(f) Find **B**.

4.	The transformation U , represented by the 2×2 matrix P , is a rotation through anticlockwise about the origin.	90°
	(a) Write down the matrix P .	(1)
	The transformation V , represented by the 2×2 matrix \mathbf{Q} , is a reflection in the $y=-x$.	
	(b) Write down the matrix Q .	(1)
	Given that U followed by V is transformation T , which is represented by the matrix \mathbf{F}	₹,
	(c) express R in terms of P and Q ,	(1)
	(d) find the matrix \mathbf{R} ,	
		(2)
	(e) give a full geometrical description of <i>T</i> as a single transformation.	(2)

6. $\mathbf{X} = \begin{pmatrix} 1 & a \\ 3 & 2 \end{pmatrix}$, where a is a constant.

(a) Find the value of a for which the matrix X is singular.

(2)

$$\mathbf{Y} = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}$$

(b) Find \mathbf{Y}^{-1} .

(2)

The transformation represented by Y maps the point A onto the point B.

Given that *B* has coordinates $(1 - \lambda, 7\lambda - 2)$, where λ is a constant,

(c) find, in terms of λ , the coordinates of point A.

-4

Given that the matrix	\mathbf{M} is singular, find the possible values of x .	
		(4)

8.

$$\mathbf{A} = \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix}$$

and **I** is the 2×2 identity matrix.

(a) Prove that

$$\mathbf{A}^2 = 7\mathbf{A} + 2\mathbf{I}$$

(2)

(b) Hence show that

$$\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A} - 7\mathbf{I})$$

(2)

The transformation represented by A maps the point P onto the point Q.

Given that Q has coordinates (2k + 8, -2k - 5), where k is a constant,

(c) find, in terms of k, the coordinates of P.

2. (i)
$$\mathbf{A} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix}$$
, where k is a constant

Given that

$$\mathbf{B} = \mathbf{A} + 3\mathbf{I}$$

where I is the 2×2 identity matrix, find

(a) **B** in terms of k,

(2)

(b) the value of k for which **B** is singular.

(2)

(ii) Given that

$$\mathbf{C} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \quad \mathbf{D} = (2 \ -1 \ 5)$$

and

$$E = CD$$

find E.

1	2)	
•	4)	

6.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

The transformation represented by ${\bf B}$ followed by the transformation represented by ${\bf A}$ is equivalent to the transformation represented by ${\bf P}$.

(a) Find the matrix **P**.

(2)

Triangle T is transformed to the triangle T' by the transformation represented by \mathbf{P} .

Given that the area of triangle T' is 24 square units,

(b) find the area of triangle T.

(3)

Triangle T' is transformed to the original triangle T by the matrix represented by \mathbf{Q} .

(c) Find the matrix \mathbf{Q} .

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	(at ² , 2at)	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$